Nuclear Data Evaluations for Tungsten ^{182-184,186}W and ^{63,65}Cu isotopes

M.T. Pigni, L.C. Leal, V. Sobes, D. Wiarda, K.H. Guber, M.E. Dunn

Oak Ridge National Laboratory Oak Ridge, TN

NCSP Annual Technical Program
Lawrence Livermore National Laboratory
March 2015

Outline

- Nuclear Data Evaluation Overview
- Evaluation Procedure with SAMMY
 - Details on the differential data evaluation procedure (cross section from resonance parameters)
 - Link to benchmarks (integral data)
- (Completed) Evaluation work on ¹⁸³W (Pigni)
- (Completed) Evaluation work on ^{182,184,186}Tungsten (Leal)
- (Completed) Evaluation work on ^{63,65}Cu (Sobes)
- (On going) Evaluation work on Ca (Pigni)
- Conclusions

Nuclear Data Evaluation Status Overview

Resolved Resonance Region (RRR) Cross Section Evaluations

No.	Nucleus (I [™])	$E_{\min} - E_{\max}^{ORNL}(E_{\max}^{existing})$	Method	No. Levels ^(*)	J_0	J ₁	Evaluator
1 🗸	¹⁸² W (0 ⁺)	10 ⁻⁵ eV-10 (5.0) keV	RM	306	171	135	L. C. Leal
2 🗸	¹⁸³ W (1/2 ⁻)	10 ⁻⁵ eV–5 (2.2) keV	RM	387	346	21	M. T. Pigni
3 ✓	¹⁸⁴ W (0 ⁺)	10 ⁻⁵ eV-10 (4.0) keV	RM	178	94	84	L. C. Leal
4 🗸	¹⁸⁶ W (0 ⁺)	10 ⁻⁵ eV-10 (8.3) keV	RM	169	95	74	L. C. Leal
5 ✓	⁶³ Cu (3/2 ⁻)	10 ⁻⁵ eV-300 (100) keV	RM	527	323	204	V. Sobes
6 ✓	⁶⁵ Cu (3/2 ⁻)	10 ⁻⁵ eV-300 (100) keV	RM	762	525	237	V. Sobes
7 X	⁴⁰ Ca (0 ⁺)	10 ⁻⁵ eV-1.0 (0.5) MeV	RM	On going			M.T. Pigni

SAMMY Evaluation Procedure (differential data analysis)

SAMMY Sequential Evaluation

- A final set of parameters should fit reasonably well (small chi-square) the set of experimental data (e.g., data1, data2, data3, data4, data5)
- Generally there are multiple issues to be addressed by the evaluator:
 - Experimental data have different resolution
 - Experimental data have different energy range. Careful analysis of external levels is needed
 - Normalization of experimental data
 - Wrong spin assignment of resonance parameters
 - Missing information in old experiments

 National Laborator

SAMMY Evaluation Procedure (link to Integral data)

- All experimental data have been reasonably represented by a set of resonance parameters and covariance (uncertainty) is obtained
 - SAMMY resonance parameter and covariance are converted into the ENDF/B format file 2 (parameter) and 32 (covariance matrix)
- Process ENDF/B file with NJOY or AMPX in order to generate cross section in pointwise and/or group representation
- Find in the ICSBEP database integral benchmark experiments sensitive to the data of the evaluated isotope(s)
- Run MCNP and/or KENO codes
 - sensitivity analysis using TSUNAMI and TSURFER in order to improve agreement with benchmark experiments
 - Goal: improve results of integral data calculations and, at the same time, have reasonable description of differential data
- SAMMY analysis together with TSUNAMI/TSURFER is the way to go

SAMMY Evaluation Procedure (link to Integral data)

Differential and Integral

OAK RIDGE
National Laboratory

SAMMY Evaluation Procedure (link to Integral data)

Starting Point: External Levels and Database

- External levels: bound levels (negative resonances) and levels above the resonance region
 - Careful determination of the external levels is needed before starting a SAMMY evaluation
 - It provides a good understanding of the scattering potential cross section
 - Indicates whether background effects a properly calculated
 - (Effective) nuclear scattering radii are well defined once the external levels have been determined
 - Provides an insight whether a direct reaction component is present
- Consistency of the database
 - Resolution function (ORELA, GELINA, ...)
 - Data normalization
 - ...

External Levels Evaluation

Contribution from the external levels - bound levels (negative resonances) and levels above the resonance region - and potential scattering cross section

At low energies the effective radius is well defined and the potential scattering cross section is depending by the channel radius, a, and distant-level parameter, R∞, as

$$\sigma^{pot} \xrightarrow{E \to 0} 4\pi a^2 (1 - R^{\infty})^2 = 4\pi R^{1/2}$$

- R∞(E) is essentially the difference between the contribution to the Rmatrix from the resonances below and above E
 - External levels important to avoid troublesome edge effects near the boundaries of the internal region

Figure 1. The potential scattering cross section calculated for a channel radius $a_c=7.3$ fm and a distant-level parameter $\mathcal{R}_c^{J,\infty}=0$ plus the contribution of 2 bound, i.e., negative levels below and 3 levels above the RRR 5 keV upper limit. The continuous red curve is a fit to the cross sections obtained by extrapolating the known RRR levels below and above the RRR.

¹⁸³W cross section evaluation (Pigni)

Step 1: Determination of number of partial waves

 The magnitude of the penetrability factors determines the strength of the partial-wave components responsible of the quasi-stationary compound state.

$$\Gamma_{\lambda c} = 2\gamma_{\lambda c}^2 P_{\ell}$$

	ℓ	s	J^{π}	g_J	wave		
	0	0	0-	1/4	s		
		1	1-	3/4			
183 W 7 (1 /9-)	1	0	1+	3/4			
$^{183}W (1/2^{-})$		1	0+ 1+ 2+	1/4 3/4 5/4	p		
	2	0	2-	5/4	d		
		1	1- 2- 3-	3/4 5/4 7/4			

0 -10 $\ln P_{\ell}(E; a_{\rm c})$ -20 $n + {}^{183}W$ -40 -50 -60 10^{-1} 10^{+0} 10^{+2} 10^{-2} 10^{+3} 10^{+1} 10^{+4} 10^{-3} Incident Neutron Energy (keV)

Note: for all Tungsten isotopes s- and p-waves were included

Figure 2. Hard-sphere penetrability factors $P_\ell \equiv P_\ell(E;a_c)$ of n+183W for different angular momentum ℓ calculated at the channel radius $a_c=7.3$ fm .

¹⁸³W cross section evaluation (Pigni)

Step 2: Fitting procedure

Results: Cross sections (Tungsten isotopes)

Neutron incident energy (eV)

Results: Cross sections (Tungsten isotopes(*))

Neutron incident energy (eV)

(*) M.T. Pigni et al., PHYSOR 2012 – Advances in Reactor Physics – Knoxville, TN April 15-20 2012 (published)

M.T. Pigni et al., International Conference on Nuclear Data for Science and Technology (ND2013), New York, NY March 4-8 2013 (published)

M.T. Pigni et al., International Conference on Nuclear Criticality Safety (ICNC2015), Charlotte, NC September 13-17, 2015 (accepted)

Results: Cross sections (Tungsten isotopes)

Cross sections (Tungsten)

Statistics on Resonance parameters

National Laboratory

Statistics on Resonance parameters

Cu Cross Section Evaluations Thermal (Sobes)

Motivation

 Nuclear Data Advisory Group (NDAG) identified Cu-63 and Cu-65 as "IMPORTANT FOR MEASUREMENTS AND EVALUATIONS"

Purpose of Experiment:

- Thermal Cross Section Shape
- Thermal Cross Section Uncertainty
- SAMMY Resolved Resonance Analysis

Cu Cross-section Evaluations Thermal (Sobes)

 A better definition of the uncertainty and correlations at the thermal energy

Cu Cross-section Evaluations (Sobes)

- SAMMY Evaluation of the Transmission Data
 - SAMMY analysis of transmission data for Cu-63 and Cu-65
 - Measurements made at the Oak Ridge Electron Linear Accelerator (ORELA) by M. S. Pandey, J. B. Garg, and J. A. Harvey (1977)
 - Flight-path length: 80 meters
 - Thicknesses:
 - Cu-63 0.07895 at/barns
 - Cu-65 0.07437 at/barns
 - Energy Range: 0.0001 eV to 300 keV

Updated 63,65Cu Evaluations (Sobes)

- Three major improvements of consequence to the Zeus benchmarks:
 - Resolved resonance region expanded three-fold
 - Capture cross section evaluated based on experimental measurements
 - Detailed angular distributions generated for elastic scattering

Cu cross section evaluations (Sobes)

SAMMY Fit of the transmission data of ⁶³Cu and ⁶⁵Cu in the energy range 30 eV-300 keV

Extending the Resolved Resonance Region

Resolved resonance region of both copper isotopes, has been extended from 99.5 keV to 300 keV.

Detailed Angular Distributions

- For the Zeus cases, system k_{eff} is most sensitive to the elastic scattering reaction in copper
- Previous angular distributions came from model calculations
- New angular distributions generated from resonance parameters using Blatt-Biedenharn formalism.
 - Self-consistent with the angle-integrated elastic scattering
 - Display resonance behavior.
- For heavily reflected systems, such as the Zeus cases, the forward/backward component of the angular distribution of elastic scattering determines whether scattered neutrons leak out of the system or return back into the fuel region.

Benchmarking Results: keff

Case	Model Benchmark	Cu Res. (File 2)	VII.1	ORNL	VII.1	ORNL	ORNL
		Cu Ang. Dist. (File 4-2)	VII.1	VII.1	ORNL	ORNL	ORNL
		235U	VII.1	VII.1	VII.1	VII.1	ORNL
		All other isotopes	VII.1	VII.1	VII.1	VII.1	VII.1
1	0.99770 +/- 0.00080		0.99370	0.99663	0.98864	0.99236	0.99562
2	1.00010 +/- 0.00080		0.99640	1.00097	0.99239	0.99622	0.99903
3	1.00150 +/- 0.00090		1.00120	1.00556	0.99570	1.00001	1.00136
4	1.00160 +/-0.00080		1.00670	1.01355	1.00071	1.00697	1.00423

VII.1 = ENDF/B-VII.1

Updated 63,65Cu Evaluation

 The capture cross section were updated based on experimental capture measurements.

Updated angular distributions provided the correct balance between forward/backward scattering to give satisfactory benchmark results with the new resonance parameters.

Updated Benchmarking Results

New ^{63,65}Cu Resonance Parameters Only: Smaller Capture Cross Section Found

- Cu evaluations updated with experimental capture data give smaller capture cross section
- Previous evaluation calculated capture from resonance parameters based on experimental transmission data only

Updated Capture Cross Section

New ^{63,65}Cu Angular Distributions Only

- For the reflected geometry of Zeus a scattering angular distribution plays a significant role in k_{eff}.
- Misrepresentation of the capture cross section in old evaluation was compensated by the angular distributions of elastic scattering.

Detailed Angular Distribution

Summary Tungsten (Pigni/Leal)

- We applied the R-matrix SAMMY method using the Reich-Moore approximation to determine a consistent set of neutron resonance parameters for tungsten isotopes
- In the analyzed energy range, these evaluations double the RRR energy range present in the latest US nuclear data library (ENDF/B-VII.1)
- The experimental data were used sequentially to ensure that the calculated cross sections were in good agreement with multiple transmission data sets
- Results agree with the systematics of the observed s- and p-wave resonances, such as level spacing systematics and strength functions
- Tungsten evaluated files also include cross-section covariance evaluations
- We also evaluated and improved cross sections in the thermal energy range

Summary Copper (Sobes)

Concluding Remarks

- Measurement of thermal total cross sections at MIT (DOE and NCSP sponsorship)
- SAMMY analysis of the experimental data was performed for ⁶³Cu and ⁶⁵Cu in the thermal region and also RRR.
- The present upper bound energy of the resolved resonance ENDF/B-VII.1 evaluations for ⁶³Cu and ⁶⁵Cu has been extended from 99 keV to 300 keV (PHYSOR 2012, Knoxville, TN)
- Benchmark analyses including updated angular distributions and new experimental data on capture cross sections

